Keratins determine network stress responsiveness in reconstituted actin-keratin filament systems

Author:

Elbalasy ImanORCID,Mollenkopf Paul,Tutmarc Cary,Herrmann Harald,Schnauß Jörg

Abstract

The cytoskeleton is a major determinant of cell mechanics, a property that is altered during many pathological situations. To understand these alterations, it is essential to investigate the interplay between the main filament systems of the cytoskeleton in the form of composite networks. Here, we investigate the role of keratin intermediate filaments (IFs) in network strength by studying in vitro reconstituted actin and keratin 8/18 composite networks via bulk shear rheology. We co-polymerized these structural proteins in varying ratios and recorded how their relative content affects the overall mechanical response of the various composites. For relatively small deformations, we found that all composites exhibited an intermediate linear viscoelastic behavior compared to that of the pure networks. In stark contrast, the composites displayed increasing strain stiffening behavior as a result of increased keratin content when larger deformations were imposed. This strain stiffening behavior is fundamentally different from behavior encountered with vimentin IF as a composite network partner for actin. Our results provide new insights into the mechanical interplay between actin and keratin in which keratin provides reinforcement to actin. This interplay may contribute to the overall integrity of cells, providing an explanation for the stability of stressed epithelial tissues due to their high keratin contents. Additionally, this helps us to understand the physiological necessity to exchange IF systems during epithelial-mesenchymal transition (EMT) in order to suppress strain stiffening of the network, making cells more elastic and, thus, facilitating their migration through dense tissues.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3