A broadly resolved molecular phylogeny of New Zealand cheilostome bryozoans as a framework for hypotheses of morphological evolution

Author:

Orr RJS,Di Martino E,Gordon DP,Ramsfjell MH,Mello HL,Smith AM,Liow LH

Abstract

AbstractLarger molecular phylogenies based on ever more genes are becoming commonplace with the advent of cheaper and more streamlined sequencing and bioinformatics pipelines. However, many groups of inconspicuous but no less evolutionarily or ecologically important marine invertebrates are still neglected in the quest for understanding species- and higher-level phylogenetic relationships. Here, we alleviate this issue by presenting the molecular sequences of 165 cheilostome bryozoan species from New Zealand waters. New Zealand is our geographic region of choice as its cheilostome fauna is taxonomically, functionally and ecologically diverse, and better characterized than many other such faunas in the world. Using this most taxonomically broadly-sampled and statistically-supported cheilostome phylogeny comprising 214 species, when including previously published sequences, we tested several existing systematic hypotheses based solely on morphological observations. We find that lower taxonomic level hypotheses (species and genera) are robust while our inferred trees did not reflect current higher-level systematics (family and above), illustrating a general need for the rethinking of current hypotheses. To illustrate the utility of our new phylogeny, we reconstruct the evolutionary history of frontal shields (i.e., a calcified bodywall layer in ascus-bearing cheilostomes) and asked if its presence has any bearing on the diversification rates of cheilostomes.

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. The Shifting Balance of Diversity Among Major Marine Animal Groups

2. Andrews, S. , 2010. FastQC: A quality control tool for high throughput sequence data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/proiects/fastqc/

3. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications;Molecular Ecology Resources,2017

4. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3