Subtle changes in crosslinking drive diverse anomalous transport characteristics in actin-microtubule networks

Author:

Anderson S. J.,Garamella J.,Adalbert S.,McGorty R. J.,Robertson-Anderson R. M.

Abstract

AbstractAnomalous diffusion in crowded and complex environments is widely studied due to its importance in intracellular transport, fluid rheology and materials engineering. Specifically, diffusion through the cytoskeleton, a network comprised of semiflexible actin filaments and rigid microtubules that interact both sterically and via crosslinking, plays a principal role in viral infection, vesicle transport and targeted drug delivery. Here, we elucidate the impact of crosslinking on particle diffusion in composites of actin and microtubules with actin-actin, microtubule-microtubule and actin-microtubule crosslinking. We analyze a suite of complementary transport metrics by coupling single-particle tracking and differential dynamic microscopy. Using these orthogonal techniques, we find that particles display non-Gaussian and non-ergodic subdiffusion that is markedly enhanced by cytoskeletal crosslinking of any type, which we attribute to suppressed microtubule mobility. However, the extent to which transport deviates from normal Brownian diffusion depends strongly on the crosslinking motif – with actin-microtubule crosslinking inducing the most pronounced anomalous characteristics – due to increased actin fluctuation heterogeneity. Our results reveal that subtle changes to actin-microtubule interactions can have dramatic impacts on diffusion in the cytoskeleton, and suggest that less mobile and more locally heterogeneous networks lead to more strongly anomalous transport.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell

2. Cytoskeletal crosstalk: when three different personalities team up

3. The Cytoskeleton—A Complex Interacting Meshwork

4. Structural organization and energy storage in crosslinked actin assemblies;PLOS Comput. Biol.,2018

5. Rivero, F. et al. The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. 13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3