Abstract
AbstractThe stroke induced by ischemia of brain remains high incidence and death rate. The study wanted to confirm the effects of QKI 6 on the protection role in neurons of rat model of cerebral ischemia/reperfusion injury (CIRI). The rat model with CIRI induced by MCAO (middle cerebral artery occlusion) was well established and rat neurons were isolated to characterize the effects of QKI 6 mediated by SIRT1 on synthesis of triglyceride in neuron and neuronal apoptosis via activation of SIRT1-PPARγ-PGC-1α signaling pathway. The expression levels of SIRT1 or QKI 6, and acetylation level of QKI 6 was decreased in neurons of rat model with CIRI. QKI 6 deacetylated and mediated by SIRT1 that contributed to suppressing the progression of neuronal apoptosis in rat through promoting synthesis of triglyceride in vivo and in vitro via SIRT1-PPARγ-PGC-1α signaling pathway, then inhibiting CIRI. In conclusion, our results demonstrated SIRT1 deacetylates QKI 6, the RNA-binding protein, that affects significantly the synthesis of triglyceride in neurons of CIRI rat model. Moreover, it activated transcription factor PGC-1α through post-transcriptional regulation of the expression of PPARγ, and further enhanced synthesis of triglyceride, thereby restrained the progression of neural apoptosis and CIRI.
Publisher
Cold Spring Harbor Laboratory