Abstract
AbstractTransient dynamics are crucial for understanding ecological and life-history dynamics. In this study, we analyze damping time, the time taken by a population to converge to a stable (st)age structure following a perturbation, for over 600 species of animals and plants. We expected damping time to be associated with both generation time Tc and demographic dispersion σ based on previous theoretical work. Surprisingly, we find that damping time (calculated from the population projection matrix) is approximately proportional to Tc across taxa on the log-log scale, regardless of σ. The result suggests that species at the slow end of fast-slow continuum (characterized with long generation time, late maturity, low fecundity) are more vulnerable to external disturbances as they take more time to recover compared to species with fast life-histories. The finding on damping time led us to next examine the relationship between generation time and demographic dispersion. Our result reveals that the two life-history variables are positively correlated on a log-log scale across taxa, implying long generation time promotes demographic dispersion in reproductive events. Finally, we discuss our results in the context of metabolic theory and contribute to existing allometric scaling relationships.
Publisher
Cold Spring Harbor Laboratory