Phytotoxic tryptoquialanines produced in vivo by Penicillium digitatum are exported in extracellular vesicles

Author:

Costa Jonas HenriqueORCID,Bazioli Jaqueline Moraes,Barbosa Luidy Darllan,dos Santos Júnior Pedro Luis Theodoro,Reis Flavia C. G.,Klimeck Tabata,Crnkovic Camila Manoel,Berlinck Roberto G. S.,Sussulini Alessandra,Rodrigues Marcio L.ORCID,Fill Taícia Pacheco

Abstract

ABSTRACTPenicillium digitatum is the most aggressive pathogen of citrus fruits. Tryptoquialanines are major indole alkaloids produced by P. digitatum. It is unknown if tryptoquialanines are involved in the damage of citrus fruits caused by P. digitatum. To investigate the pathogenic roles of tryptoquialanines, we initially asked if tryptoquialanines could affect the germination of Citrus sinensis seeds. Exposure of the citrus seeds to tryptoquialanine A resulted in a complete inhibition of germination and an altered metabolic response. Since this phytotoxic effect requires the extracellular export of tryptoquialanine A, we investigated the mechanisms of extracellular delivery of this alkaloid in P. digitatum. We detected extracellular vesicles (EVs) released by P. digitatum both in culture and during infection of citrus fruits. Compositional analysis of EVs produced during infection revealed the presence of a complex cargo, which included tryptoquialanines and the mycotoxin fungisporin. The EVs also presented phytotoxicity activity in vitro, and caused damage to the tissues of citrus seeds. Through molecular networking, it was observed that the metabolites present in the P. digitatum EVs are produced in all of its possible hosts. Our results reveal a novel phytopathogenic role of P. digitatum EVs and tryptoquialanine A, implying that this alkaloid is exported in EVs during plant infection.IMPORTANCEDuring the post-harvest period, citrus fruits can be affected by phytopathogens such as Penicillium digitatum, which causes the green mold disease and is responsible for up to 90 % of the total citrus losses. Chemical fungicides are widely used to prevent the green mold disease, leading to concerns about environmental and health risks. To develop safer alternatives to control phytopathogens, it is necessary to understand the molecular basis of infection during the host-pathogen interaction. In the P. digitatum model, the virulence strategies are poorly known. Here, we describe the production of phytotoxic extracellular vesicles (EVs) by P. digitatum during the infection of citrus fruits. We also characterized the secondary metabolites in the cargo of EVs and found in this set of molecules an inhibitor of seed germination. Since EVs and secondary metabolites have been related to virulence mechanisms in other host-pathogen interactions, our data are important for the comprehension of how P. digitatum causes damage to its primary hosts.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. The role of the International Society of Citriculture on the world citrus industry

2. Citrus: World Markets and Trade. United States Department of Agriculture. Foreign Agricultural Service, January, p. 1–13, 2020. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/w66343603/00000g55g/kp78h0193/citrus.pdf (accessed 14 Apr 2020).

3. Secretome analysis of Trichoderma atroviride T17 biocontrol of Guignardia citricarpa

4. Penicillium digitatum infection mechanisms in citrus: What do we know so far?

5. Elucidation of the Initial Growth Process and the Infection Mechanism of Penicillium digitatum on Postharvest Citrus (Citrus reticulata Blanco)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3