pH and Receptor Induced Conformational Changes-Implications Towards S1 Dissociation of SARS-CoV2 Spike Glycoprotein

Author:

Castin Jesu E.ORCID,Gideon Daniel A.ORCID,Sudarsha Karthik S.,Rosita Sherlin A.

Abstract

AbstractViruses, being obligate intracellular parasites, must first attach themselves and gain entry into host cells. Viral fusion machinery is the central player in the viral attachment process in almost every viral disease. Viruses have incorporated an array of efficient fusion proteins on their surfaces to bind efficiently to host cell receptors. They make use of the host proteolytic enzymes to rearrange their surface protein(s) into the form which facilitates their binding to host-cell membrane proteins and subsequently, fusion. This stage of viral entry is very critical and has many therapeutic implications. The current global pandemic of COVID-19 has sparked severe health crisis and economic shutdowns. SARS-CoV2, the etiological agent of the disease has led to millions of deaths and brought the scientific community together in an attempt to understand the mechanisms of SARS-CoV2 pathogenesis and mortality. Like other viral fusion machinery, CoV2 spike (S) glycoprotein- ‘The Demogorgon’ poses the same questions about viral-host cell fusion. The intermediate stages of S protein-mediated viral fusion are unclear owing to the lack of structural insights and concrete biochemical evidence. The mechanism of conformational transition is still unclear. S protein binding and fusion with host cell receptors, Eg., angiotensin-converting enzyme-2 (ACE2) is accompanied by cleavage of S1/S2 subunits. To track the key events of viral-host cell fusion, we have identified (in silico) that low pH-induced conformational change and ACE-2 binding events promote S1 dissociation. Deciphering key mechanistic insights of SARS-CoV2 fusion will further our understanding of other class-I fusion proteins

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3