From SARS-CoV-2 infection to COVID-19 disease: a proposed mechanism for viral spread to the lower airway based on in silico estimation of virion flow rates

Author:

Basu SaikatORCID,Chakravarty Arijit

Abstract

ABSTRACTWhile the nasopharynx in the upper respiratory airway is the dominant initial infection site for SARS-CoV-2, the physiologic mechanism that launches the infection in the lower airway is still not well-understood. Based on the rapidity with which SARS-CoV-2 infection progresses to the lungs, it has been conjectured that the nasopharynx acts as the seeding zone for subsequent contamination of the lower airway via aspiration of virus-laden boluses of nasopharyngeal fluids. In this study, we examine the plausibility of this proposed mechanism. To this end, we have developed computational fluid mechanics models of the inhalation process in two medical imaging based airway reconstructions and have quantified the nasopharyngeal liquid volume ingested into the lower airspace during each aspiration. The numerical predictions are validated by comparing the number of projected aspirations (approximately 2 – 4) during an eight-hour sleep cycle with prior observational findings of 3 aspirations in human subjects. Extending the numerical trends on aspiration volume to earlier records on aspiration frequency for the entire day indicates a total aspirated nasopharyngeal liquid volume of 0.3 – 0.76 ml per day. We then used sputum assessment data from hospitalized COVID-19 patients to estimate the number of virions that are transmitted daily to the lungs via nasopharyngeal liquid boluses. For mean sputum viral load, our modeling projects that the number of virions penetrating to the lower airway per day will range over 2.1 × 106 – 5.3 × 106; for peak viral load, the corresponding number of penetrating virions hovers between 7.1 × 108 – 17.9 × 108. These findings fill in a key piece of the mechanistic puzzle of the progression from SARS-CoV-2 infection of the nasopharynx to the development of COVID-19 disease within a patient, and point to dysphagia as a potential underlying risk factor for COVID-19. The findings also have significant practical implications in the design of COVID-19 prophylactics and therapeutics that aim to constrain the pathogenic progress of the disease within the limits of the upper airway.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3