Deciphering spatio-temporal fluorescence changes using multi-threshold event detection (MTED)

Author:

Müller Franziska E.ORCID,Cherkas VolodymyrORCID,Stopper Gebhard,Caudal Laura C.ORCID,Stopper LauraORCID,Kirchhoff FrankORCID,Henneberger Christian,Ponimaskin Evgeni G.ORCID,Zeug AndreORCID

Abstract

AbstractRecent achievements in indicator optimization and imaging techniques promote the exploration of Ca2+ activity patterns as a main second messenger in many organs. Astrocytes are important regulators of brain activity and well known for their Ca2+-dependent modulation of neurons. However, standardized methods to analyze and interpret Ca2+ activity recordings are missing and hindering global comparisons. Here, we present a biophysics-based concept to analyze Ca2+signals, which includes multiple thresholds and provides the experimenter with a comprehensive toolbox for a differentiated and in-depth characterization of Ca2+ signals. We analyzed various ex vivo and in vivo imaging datasets and verify the validity of our multi-threshold event detection (MTED) algorithm across Ca2+ indicators, imaging setups, and model systems from primary cell culture to awake, head-fixed mice. Applying our MTED concept enables standardized analysis and advances research using optical readouts of cellular activity to decrypt brain function. It allowed us to obtain new insights into the complex dependence of Ca2+activity patterns on temperature and neuronal activity.HighlightsWe present a robust pixel-based algorithm to analyze multidimensional fluorescence data.Automated multiple-threshold analysis accurately quantifies changes in fluorescence across magnitudes.It characterizes the complexity of dynamic and overlapping activity patterns of Ca2+ activity of astrocytes in vitro, in situ, and in vivo.Its application provides quantitative parameters how temperature and neuronal activity determine astrocytic Ca2+ activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3