Abstract
AbstractEarly life stress (ELS) presents an important risk factor for drug addiction and comorbid depression and anxiety through persistent effects on the mesolimbic dopamine (DA) pathways1. Using an ELS model for child neglect (a single 24 h episode of maternal deprivation, MD) in rats, recent published works from our lab show that MD induces dysfunction in ventral tegmental area (VTA) DA neurons 2–4 and its negative controller, the lateral habenula (LHb) 5–7. In regard to LHb, MD-induced potentiation of glutamatergic synaptic transmission onto LHb neurons shifts the coordination of excitation/inhibition (E/I) balance towards excitation, resulting in an increase in the overall spontaneous neuronal activity with elevation in bursting and tonic firing, and intrinsic excitability of LHb neurons in early adolescent male rats 5–7. Here, we explored how MD affects intravenous morphine self-administration (MSA) acquisition and sucrose preference as well as glutamatergic synaptic function in LHb neurons of adult male rats self-administering morphine. We found that MD-induced increases in LHb neuronal and glutamatergic synaptic activity and E/I ratio persisted into adulthood. Moreover, MD significantly reduced morphine intake, triggered anhedonia-like behavior in the sucrose preference test (SPT), and was associated with persistent glutamatergic potentiation 24h after the last MSA session. MSA also triggered postsynaptic glutamatergic potentiation in LHb neurons of control rats during this time period. Our data highlights that ELS-induced glutamatergic plasticity in LHb may dampen the positive reinforcing properties of natural rewards and opioids, and contribute to the development of anhedonic and dysphoric states associated with opioids.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献