Intramolecular synergism and bacterial lysis regulation can explain the complex multi-domain architecture of the bacteriophage endolysin PlySK1249

Author:

Oechslin FrankORCID,Menzi Carmen,Moreillon Philippe,Resch Gregory

Abstract

AbstractEndolysins are peptidoglycan hydrolases produced at the end of the bacteriophage (phage) replication cycle to lyse the host cell. Gram-positive phages endolysins come in a variety of multi-modular forms that combine different catalytic domains and may have evolved to adapt to their bacterial hosts. However, the reason why phage can adopt endolysin with such complex multidomain architecture is for the moment not well understood.We used theStreptococcus dysgalactiaephage endolysin PlySK1249 as a model to study the implication of multi-domain architecture in phage-induced bacterial lysis and lysis regulation. The activity of the enzyme relied on a bacteriolytic amidase (Ami), a non-bacteriolytic L-Ala-D-Ala endopeptidase (CHAP) acting as a de-chaining enzyme and central LysM cell wall binding domain (CBD).Ami and CHAP synergized for peptidoglycan digestion and bacteriolysis in the native enzyme or when expressed individually and reunifiedin vitro. This cooperation could be modulated by bacterial cell wall-associated proteases, which specifically cleaved the two linkers connecting the different domains. While both catalytic domains were observed to act coordinately to optimize bacterial lysis, the CBD is expected to delay diffusion of the enzyme until proteolytic inactivation is achieved.As for certain autolysins, PlySK1249 cleavage by bacterial cell wall associated proteases might be an example of dual phage-bacterial regulation and mutual coevolution. In addition, understanding more thoroughly the multidomain interplay of PlySK1249 opens new perspectives on the ideal architecture of therapeutic antibacterial endolysins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3