Thinking ahead: spontaneous prediction in context as a keystone of language in humans and machines

Author:

Goldstein Ariel,Zada Zaid,Buchnik Eliav,Schain Mariano,Price Amy,Aubrey Bobbi,Nastase Samuel A.ORCID,Feder Amir,Emanuel Dotan,Cohen Alon,Jansen Aren,Gazula Harshvardhan,Choe Gina,Rao Aditi,Kim Se Catherine,Casto Colton,Fanda LoraORCID,Doyle Werner,Friedman Daniel,Dugan Patricia,Melloni Lucia,Reichart Roi,Devore SashaORCID,Flinker Adeen,Hasenfratz Liat,Levy Omer,Hassidim Avinatan,Brenner Michael,Matias Yossi,Norman Kenneth A.,Devinsky Orrin,Hasson Uri

Abstract

AbstractDeparting from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models are trained to generate appropriate linguistic responses in a given context. We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process natural language: 1) both are engaged in continuous next-word prediction before word-onset; 2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise (i.e., prediction error signals); 3) both represent words as a function of the previous context. In support of these three principles, our findings indicate that: a) the neural activity before word-onset contains context-dependent predictive information about forthcoming words, even hundreds of milliseconds before the words are perceived; b) the neural activity after word-onset reflects the surprise level and prediction error; and c) autoregressive DLM contextual embeddings capture the neural representation of context-specific word meaning better than arbitrary or static semantic embeddings. Together, our findings suggest that autoregressive DLMs provide a novel and biologically feasible computational framework for studying the neural basis of language.

Publisher

Cold Spring Harbor Laboratory

Reference96 articles.

1. Syntactic Structure from Deep Learning;Annu. Rev. Linguist,2021

2. Syntactic Structures

3. Jacobs, R. A. & Rosenbaum, P. S. English transformational grammar. (1968).

4. Radford, A. et al. Language models are unsupervised multitask learners. OpenAI Blog (2019).

5. Brown, T. B. et al. Language Models are Few-Shot Learners. arXiv [cs.CL] (2020).

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3