V-NeuroStack: 3D Time Stacks for Identifying Patterns in Calcium Imaging Data

Author:

Naik Ashwini G.,Kenyon Robert V.,Taheri Aynaz,Berger-Wolf Tanya,Ibrahim Baher,Llano Daniel A.ORCID

Abstract

AbstractBackgroundUnderstanding functional correlations between the activities of neuron populations is vital for the analysis of neuronal networks. Analyzing large-scale neuroimaging data obtained from hundreds of neurons simultaneously poses significant visualization challenges. We developed V-NeuroStack, a novel network visualization tool to visualize data obtained using calcium imaging of spontaneous activity of cortical neurons in a mouse brain slice.New MethodV-NeuroStack creates 3D time stacks by stacking 2D time frames for a period of 600 seconds. It provides a web interface that enables exploration and analysis of data using a combination of 3D and 2D visualization techniques.Comparison with existing MethodsPrevious attempts to analyze such data have been limited by the tools available to visualize large numbers of correlated activity traces. V-NeuroStack can scale data sets with at least a few thousand temporal snapshots.ResultsV-NeuroStack’s 3D view is used to explore patterns in the dynamic large-scale correlations between neurons over time. The 2D view is used to examine any timestep of interest in greater detail. Furthermore, a dual-line graph provides the ability to explore the raw and first-derivative values of a single neuron or a functional cluster of neurons.ConclusionsV-NeuroStack enables easy exploration and analysis of large spatio-temporal datasets using two visualization paradigms: (a) Space-Time cube (b)Two-dimensional networks, via web interface. It will support future advancements in in vitro and in vivo data capturing techniques and can bring forth novel hypotheses by permitting unambiguous visualization of large-scale patterns in the neuronal activity data.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Ahn Jae-wook [et al.] Temporal Visualization of Social Network Dynamics: Prototypes for Nation of Neighbors [Conference] // Social Computing, Behavioral-Cultural Modeling and Prediction / ed. Salerno John [et al.]. - Berlin: Springer Berlin Heidelberg, 2011. - pp. 309–316. - ISBN: 978-3-642-19656-0.

2. Jeff NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity. [Journal]. - [s.l.];IEEE Trans. Vis. Comput. Graph.,2014

3. Arsiwalla Xerxes [et al.] Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction [Journal] // Frontiers in Neuroinformatics. - 2 2015. - Vol. 9.

4. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex [Journal];Brain Sciences,2017

5. Bach B. [et al.] A Review of Temporal Data Visualizations Based on Space-Time Cube Operations [Conference] // EuroVis - STARs / ed. Borgo R. , Maciejewski R. and Viola I. . - [s.l.]: The Eurographics Association, 2014. - ISBN: 978-3-03868-028-4.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3