Functional coupling between NMDA receptors and SK channels in rat hypothalamic magnocellular neurons: altered mechanisms during heart failure

Author:

Ferreira-Neto HC,Stern JE

Abstract

ABSTRACTGlutamatergic NMDA receptors (NMDAR) and small conductance Ca2+-activated K+ channels (SK) are critical synaptic and intrinsic mechanisms that regulate the activity of hypothalamic magnocellular neurosecretory neurons (MNNs) under physiological and pathological states, including lactation and heart failure (HF). Still, whether NMDARs and SK channels in MNNs are functionally coupled, and whether changes in this coupling contribute to exacerbated neuronal activity during HF is at present unknown. In the present study, we addressed these questions using patch-clamp electrophysiology and confocal Ca2+ imaging in a rat model of ischaemic HF. We found that in MNNs of sham rats, blockade of SK channels with apamin (200 nM) significantly increased the magnitude of an NMDAR-evoked current (INMDA). We also observed that blockade of SK channels potentiated NMDAR-evoked firing, and abolished spike frequency adaptation in MNNs from sham, but not HF rats. Importantly, a larger INMDA-ΔCa2+response was observed under basal conditions in HF compared to sham rats. Finally, we found that dialyzing recorded cells with the Ca2+ chelator BAPTA (10 mM) increased the magnitude of INMDA in MNNs from both sham and HF rats, and occluded the effects of apamin in the former. Together, our studies demonstrate that in MNNs, NMDARs and SK channels are functionally coupled, forming a local negative feedback loop that restrains the excitatory effect evoked by NMDAR activation. Moreover, our studies also support a blunted NMDAR-SK channel coupling in MNNs of HF rats, standing thus as a pathophysiological mechanism contributing to exacerbated hypothalamic neuronal activity during this prevalent neurogenic cardiovascular disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3