Author:
Gingrich Ellen C.,Shepard Katherine A.,Mitchell Molly E.,Sawicka Kirsty,Darnell Jennifer C.,Akins Michael R.
Abstract
AbstractThe localization and translation of mRNAs is controlled by a diverse array of ribonucleoprotein particles (RNPs), multimolecular complexes containing mRNAs and RNA binding proteins. Fragile X granules (FXGs) are a family of RNPs that exemplify the diversity of RNA granules in the mammalian nervous system. FXGs are found in a conserved subset of neurons, where they localize exclusively to the axonal compartment. Notably, the specific RNA binding proteins and mRNAs found in FXGs depend on brain circuit and neuron type, with all forebrain FXGs containing Fragile X mental retardation protein (FMRP), the protein mutated in the human autism-related disorder Fragile X syndrome. FMRP negatively regulates FXG abundance but is not required for their association with ribosomes or mRNA. To better understand the circuit-dependent mechanisms whereby FMRP associates with and regulates FXGs, we asked how a disease-causing point mutation, I304N, in the KH2 RNA binding domain of FMRP affects these granules in two brain regions – cortex and hippocampus. We found that FMRPI304N had a reduced association with FXGs, as it was absent from approximately half of FXGs in cortex and nearly all FXGs in hippocampus. FXG abundance correlated with the number of FMRP-containing FXGs, suggesting that FMRP regulates FXG abundance by KH2-independent mechanisms that occur locally within the granules. Together, these findings illustrate that cell type-dependent mechanisms guide the assembly of similar RNA granules. Further, point mutations in RNA granule components may lead to cell type-dependent phenotypes that produce atypical forms of disorders that normally arise from more severe mutations.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献