Insights into the cooperative nature of ATP hydrolysis in actin filaments

Author:

Katkar Harshwardhan H.ORCID,Davtyan Aram,Durumeric Aleksander E. P.ORCID,Hocky Glen M.ORCID,Schramm Anthony C.,De La Cruz Enrique M.,Voth Gregory A.ORCID

Abstract

ABSTRACTActin filaments continually assemble and disassemble within a cell. Assembled filaments “age” as a bound nucleotide ATP within each actin subunit quickly hydrolyzes, followed by a slower release of the phosphate Pi, leaving behind a bound ADP. This subtle change in nucleotide state of actin subunits affects filament rigidity as well as its interactions with binding partners. We present here a systematic multiscale ultra-coarse-graining (UCG) approach that provides a computationally efficient way to simulate a long actin filament undergoing ATP hydrolysis and phosphate release reactions, while systematically taking into account available atomistic details. The slower conformational changes and their dependence on the chemical reactions are simulated with the UCG model by assigning internal states to the coarse-grained sites. Each state is represented by a unique potential surface of a local heterogeneous elastic network. Internal states undergo stochastic transitions that are coupled to conformations of the underlying molecular system. The UCG model reproduces mechanical properties of the filament and allows us to study whether fluctuations in actin subunits produce cooperative aging in the filament. Our model predicts that nucleotide state of neighboring subunit significantly modulates the reaction kinetics, implying cooperativity in ATP hydrolysis and Pi release. We further systematically coarse-grain the system into a Markov state model that incorporates assembly and disassembly, facilitating a direct comparison with previously published models. We find that cooperativity in ATP hydrolysis and Pi release significantly affects the filament growth dynamics only near the critical G-actin monomer concentration, while both cooperative and random mechanisms show similar growth dynamics far from the critical concentration. In contrast, filament composition in terms of the bound nucleotide distribution varies significantly at all monomer concentrations studied. These results provide new insights into the cooperative nature of ATP hydrolysis and Pi release and the implications it has for actin filament properties, providing novel predictions for future experimental studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3