Author:
Repina Nicole A.,McClave Thomas,Bao Xiaoping,Kane Ravi S.,Schaffer David V.
Abstract
ABSTRACTSpatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, currentin vitromethods typically do not allow for precise, dynamic, spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics impact cell behavior. Here we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using novel engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). The optical design of LAVA devices was optimized for uniform illumination of multi-well cell culture plates to enable high-throughput, spatiotemporal optogenetic activation of signaling pathways and protein-protein interactions. Using the LAVA devices, variation in light intensity induced a dose-dependent response in optoWnt activation and downstream Brachyury expression in human embryonic stem cells (hESCs). Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models embryonic presentation of Wnt signalsin vitro. The engineered LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献