Seed Genome Hypomethylated Regions Are Enriched In Transcription Factor Genes

Author:

Chen Min,Lin Jer-Young,Hur Jungim,Pelletier Julie M.,Baden Russell,Pellegrini Matteo,Harada John J.,Goldberg Robert B.

Abstract

AbstractThe precise mechanisms that control gene activity during seed development remain largely unknown. Previously, we showed that several genes essential for seed development, including those encoding storage proteins, fatty acid biosynthesis enzymes, and transcriptional regulators, such as ABI3 and FUS3, are located within hypomethylated regions of the soybean genome. These hypomethylated regions are similar to the DNA methylation valleys (DMVs), or canyons, found in mammalian cells. Here, we address the question of the extent to which DMVs are present within seed genomes, and what role they might play in seed development. We scanned soybean and Arabidopsis seed genomes from post-fertilization through dormancy and germination for regions that contain < 5% or < 0.4% bulk methylation in CG-, CHG-, and CHH-contexts over all developmental stages. We found that DMVs represent extensive portions of seed genomes, range in size from 5 to 76 kb, are scattered throughout all chromosomes, and are hypomethylated throughout the plant life cycle. Significantly, DMVs are enriched greatly in transcription factor genes, and other developmental genes, that play critical roles in seed formation. Many DMV genes are regulated with respect to seed stage, region, and tissue - and contain H3K4me3, H3K27me3, or bivalent marks that fluctuate during development. Our results indicate that DMVs are a unique regulatory feature of both plant and animal genomes, and that a large number of seed genes are regulated in the absence of methylation changes during development - probably by the action of specific transcription factors and epigenetic events at the chromatin level.SignificanceWe scanned soybean and Arabidopsis seed genomes for hypomethylated regions, or DNA Methylation Valleys (DMVs), present in mammalian cells. A significant fraction of seed genomes contain DMV regions that have < 5% bulk DNA methylation, or, in many cases, no detectable DNA methylation. Methylation levels of seed DMVs do not vary detectably during seed development with respect to time, region, and tissue, and are present prior to fertilization. Seed DMVs are enriched in transcription factor genes and other genes critical for seed development, and are also decorated with histone marks that fluctuate with developmental stage, resembling in significant ways their animal counterparts. We conclude that many genes playing important roles in seed formation are regulated in the absence of detectable DNA methylation events, and suggest that selective action of transcriptional activators and repressors, as well as chromatin epigenetic events play important roles in making a seed - particularly embryo formation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3