A ‘phenotypic hangover’ – the predictive adaptive response and multigenerational effects of altered nutrition on the transcriptome of Drosophila melanogaster

Author:

Osborne Amy J.,Dearden Peter K.

Abstract

AbstractThe Developmental Origins of Health and Disease (DOHaD) hypothesis predicts that early-life environmental exposures can be detrimental to later-life health, and that mismatch between the pre- and postnatal environment may contribute to the growing non-communicable disease (NCD) epidemic. Within this is an increasingly recognised role for epigenetic mechanisms; epigenetic modifications can be influenced by, e.g., nutrition, and can alter gene expression in mothers and offspring. Currently, there are no whole-genome transcriptional studies of response to nutritional alteration. Thus, we sought to explore how nutrition affects the expression of genes involved in epigenetic processes in Drosophila melanogaster. We manipulated Drosophila food macronutrient composition at the F0 generation, mismatched F1 offspring back to a standard diet, and analysed the transcriptome of the F0 – F3 generations by RNA-sequencing. At F0, the altered (high protein, low carbohydrate, HPLC) diet increased expression of genes involved in epigenetic processes, with coordinated downregulation of genes involved in immunity, neurotransmission and neurodevelopment, oxidative stress and metabolism. Upon reversion to standard nutrition, mismatched F1 and F2 generations displayed multigenerational inheritance of altered gene expression. By the F3 generation, gene expression had reverted to F0 (matched) levels. These nutritionally-induced gene expression changes demonstrate that dietary alteration can upregulate epigenetic genes, which may influence the expression of genes with broad biological functions. Further, the multigenerational inheritance of the gene expression changes in F1 and F2 mismatched generations suggests a predictive adaptive response (PAR) to maternal nutrition. Our findings may help to understand the interaction between maternal diet and future offspring health, and have direct implications for the current NCD epidemic.

Publisher

Cold Spring Harbor Laboratory

Reference102 articles.

1. Aiken, C. E. & Ozanne, S. E. 2013. Transgenerational developmental programming. Human reproduction update, dmt043.

2. Increase in intranuclear nuclear factor kB and decrease in inhibitor kB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect;The American journal of clinical nutrition,2004

3. Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility

4. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease;Endocrinology,2006

5. Epigenetic Transgenerational Actions of Endocrine Disruptors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3