Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium Pusillimonas ginsengisoli

Author:

Mandal Subhrangshu,Rameez Moidu Jameela,Pyne Prosenjit,Bhattacharya Sabyasachi,Sarkar Jagannath,Ghosh Wriddhiman

Abstract

AbstractMolecular mechanism of chemolithotrophic sulfur oxidation in Betaproteobacteria is less explored than that in Alphaproteobacteria. Here we carried out whole genome sequencing and analysis of a new betaproteobacterial isolate Pusillimonas ginsengisoli SBSA which oxidizes thiosulfate via formation tetrathionate as an intermediate. The 4.7-Mb SBSA genome was found to encompass a complete soxCDYZAXOB operon, plus one thiosulfate dehydrogenase (tsdA) and sulfite:acceptor oxidoreductase (sorAB) genes. Recombination-based knock-out of tsdA revealed that the entire thiosulfate oxidized by SBSA is first converted to tetrathionate, and no thiosulfate is directly converted to sulfate as typical of the Alphaproteobacterial Sox pathway whereas its tetrathionate-oxidizing ability was as good as that of the wild-type. The ∆soxYZ knock-out mutant exhibited wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB oxidized thiosulfate only up to tetrathionate and had complete impairment of tetrathionate oxidation. However, substrate-dependent O2-consumption rate of whole cells, and sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol-inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. All the present findings collectively indicated that glutathione:tetrathionate coupling in Pusillimonas ginsengisoli may involve some unknown proteins other than thiol dehydrotransferase(ThdT), while subsequent oxidation of the potential glutathione:sulfodisulfane and sulfite molecules produced may proceed via soxBCD action.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3