Author:
Mandal Subhrangshu,Rameez Moidu Jameela,Pyne Prosenjit,Bhattacharya Sabyasachi,Sarkar Jagannath,Ghosh Wriddhiman
Abstract
AbstractMolecular mechanism of chemolithotrophic sulfur oxidation in Betaproteobacteria is less explored than that in Alphaproteobacteria. Here we carried out whole genome sequencing and analysis of a new betaproteobacterial isolate Pusillimonas ginsengisoli SBSA which oxidizes thiosulfate via formation tetrathionate as an intermediate. The 4.7-Mb SBSA genome was found to encompass a complete soxCDYZAXOB operon, plus one thiosulfate dehydrogenase (tsdA) and sulfite:acceptor oxidoreductase (sorAB) genes. Recombination-based knock-out of tsdA revealed that the entire thiosulfate oxidized by SBSA is first converted to tetrathionate, and no thiosulfate is directly converted to sulfate as typical of the Alphaproteobacterial Sox pathway whereas its tetrathionate-oxidizing ability was as good as that of the wild-type. The ∆soxYZ knock-out mutant exhibited wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB oxidized thiosulfate only up to tetrathionate and had complete impairment of tetrathionate oxidation. However, substrate-dependent O2-consumption rate of whole cells, and sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol-inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. All the present findings collectively indicated that glutathione:tetrathionate coupling in Pusillimonas ginsengisoli may involve some unknown proteins other than thiol dehydrotransferase(ThdT), while subsequent oxidation of the potential glutathione:sulfodisulfane and sulfite molecules produced may proceed via soxBCD action.
Publisher
Cold Spring Harbor Laboratory