Particle-associated and free-living microbial assemblages are distinct in a permanently redox-stratified freshwater lake

Author:

Cohen Ashley B.ORCID,Klepac-Ceraj VanjaORCID,Butler KristenORCID,Weber Felix,Garber Arkadiy I.ORCID,Christensen Lisa N.,Cram Jacob A.ORCID,McCormick Michael L.ORCID,Taylor Gordon T.ORCID

Abstract

AbstractMicrobial assemblages associated with biogenic particles are phylogenetically distinct from free-living counterparts, yet biogeochemically coupled. Compositions may vary with organic carbon and inorganic substrate availability and with redox conditions, which determine reductant and oxidant availability. To explore microbial assemblage compositional responses to steep oxygen and redox gradients and seasonal variability in particle and substrate availability, we analyzed taxonomic compositions of particle-associated (PA) and free-living (FL) bacteria and archaea in permanently redox-stratified Fayetteville Green Lake. PA and FL assemblages (> 2.7 µm and 0.2 – 2.7 µm) were surveyed at the peak (July) and end (October) of concurrent cyanobacteria, purple and green sulfur bacteria blooms that result in substantial vertical fluxes of particulate organic carbon. Assemblage compositions varied significantly among redox conditions and size fractions (PA or FL). Temporal differences were only apparent among samples from the mixolimnion and oxycline, coinciding with seasonal hydrographic changes. PA assemblages of the mixolimnion and oxycline shifted from aerobic heterotrophs in July to fermenters, iron-reducers, and denitrifiers in October, likely reflecting seasonal variability in photoautotroph biomass and inorganic nitrogen. Within a light-scattering layer spanning the lower oxycline and upper monimolimnion, photoautotrophs were more abundant in July than in October, when Desulfocapsa, a sulfate-reducing and sulfur-disproportionating bacterium, and Chlorophyte chloroplasts were abundant in PA assemblages. In this layer, microbial activity and cell concentrations were also highest. Below, the most abundant resident taxa were sulfate-reducing bacteria and anaerobic respirers. Results suggest PA and FL assemblage niche partitioning interconnects multiple elemental cycles that involve particulate and dissolved phases.

Publisher

Cold Spring Harbor Laboratory

Reference135 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3