Birnaviridae virus factories show features of liquid-liquid phase separation, and are distinct from paracrystalline arrays of virions observed by electron microscopy

Author:

Reddy Vishwanatha R. A. P.ORCID,Campbell Elle A.,Wells Joanna,Simpson Jennifer,Nazki SalikORCID,Hawes Philippa C.ORCID,Broadbent Andrew J.ORCID

Abstract

AbstractTo gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs co-localized with 5-ethynyl uridine in the presence of actinomycin D, confirming they were the site of de novo RNA synthesis, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 seconds, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower co-localization of the VF GFP signal with the capsid protein VP2 (Manders’ coefficient (MC) 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs are sites of de novo RNA synthesis, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM.ImportanceMembers of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3