A study protocol for community use of digital auscultation to improve diagnosis of paediatric pneumonia in Bangladesh

Author:

Ahmed SalahuddinORCID,Mitra Dipak Kumar,Nair Harish,Cunningham Steve,Khan Ahad Mahmud,Islam Md. AshrafulORCID,McLane Ian,Chowdhury Nabidul Haque,Begum Nazma,Shahidullah Mohammod,Islam Sariful,Norrie John,Campbell Harry,Sheikh Aziz,Baqui Abdullah H.,McCollum Eric D.ORCID

Abstract

AbstractIntroductionThe World Health Organisation’s Integrated Management of Childhood Illnesses (IMCI) algorithm relies on counting respiratory rate and observing respiratory distress to diagnose childhood pneumonia. IMCI performs with high sensitivity but low specificity, leading to over-diagnosis of child pneumonia and unnecessary antibiotic use. Including lung auscultation in IMCI could improve pneumonia diagnosis. Our objectives are: (i) assess lung sound recording quality by primary health care workers (HCWs) from under-five children with the Feelix Smart Stethoscope; and (ii) determine the reliability and performance of recorded lung sound interpretations by an automated algorithm compared to reference paediatrician interpretations.Methods and analysisIn a cross-sectional design, Community HCWs will record lung sounds of ∼1,000 under-five-year-old children with suspected pneumonia at first-level facilities in Zakiganj sub-district, Sylhet, Bangladesh. Enrolled children will be evaluated for pneumonia, including oxygen saturation, and have their lung sounds recorded by the Feelix Smart stethoscope at four sequential chest locations: two back and two front positions. A novel sound-filtering algorithm will be applied to recordings to address ambient noise and optimize recording quality. Recorded sounds will be assessed against a pre-defined quality threshold. A trained paediatric listening panel will classify recordings into one of the following categories: normal, crackle, wheeze, crackle and wheeze, or uninterpretable. All sound files will be classified into the same categories by the automated algorithm and compared with panel classifications.ConclusionsLung auscultation and reliable interpretation of lung sounds of children are usually not feasible in first-level facilities in Bangladesh and other low- and middle-income countries (LMICs). Incorporating automated lung sound classification within the current IMCI pneumonia diagnostic algorithm may improve childhood pneumonia diagnostic accuracy at LMIC first-level facilities.Ethics and disseminationEthical review has been obtained in Bangladesh (BMRC Registration Number: 09630012018) and in Edinburgh, Scotland, United Kingdom (REC Reference: 18-HV-051). Dissemination will be through conference presentations, peer-reviewed journals and stakeholder engagement meetings in Bangladesh.Trial registration numberNCT03959956Article summayStrengths and limitations of this studyEvaluating the quality of lung sound recordings in a first-level facility where auscultation is usually unavailable and challenging to obtain due to a typically crowded and noisy environment and providers may not get enough time to calm the child due to time pressure from a high-volume patient.This study will assess the feasibility of recording lung sounds by front line community health workers who do not usually use conventional stethoscopes during clinical care.Two standardised paediatricians masked to the child’s clinical status will independently classify the recorded lung sounds, and a third masked and independent paediatrician will arbitrate any discrepancies.A machine-learning algorithm developed by Johns Hopkins and Sonavi Labs will detect abnormal lung sounds and be compared with classifications by human listeners/paediatricians.The study will not have chest radiography findings of enrolled children, which is considered by many a gold standard for pneumonia diagnosis, as chest radiography is not available at this level of the health system in Bangladesh. Instead, this study will measure the peripheral oxyhaemoglobin saturation and evaluate clinical examination findings, including respiratory danger signs data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3