Abstract
AbstractThe role of dopamine as a reward prediction error signal in reinforcement learning tasks has been well-established over the past decades. Recent work has shown that the reward prediction error interpretation can also account for the effects of dopamine on interval timing by controlling the speed of subjective time. According to this theory, the timing of the dopamine signal relative to reward delivery dictates whether subjective time speeds up or slows down: Early DA signals speed up subjective time and late signals slow it down. To test this bidirectional prediction, we reanalyzed measurements of dopaminergic neurons in the substantia nigra pars compacta of mice performing a self-timed movement task. Using the slope of ramping dopamine activity as a read-out of subjective time speed, we found that trial-by-trial changes in the slope could be predicted from the timing of dopamine activity on the previous trial. This result provides a key piece of evidence supporting a unified computational theory of reinforcement learning and interval timing.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献