A novel enhancer of Agouti contributes to parallel evolution of cryptically colored beach mice

Author:

Wooldridge T. BrockORCID,Kautt Andreas F.ORCID,Lassance Jean-MarcORCID,McFadden SadeORCID,Domingues Vera S.ORCID,Mallarino RicardoORCID,Hoekstra Hopi E.ORCID

Abstract

AbstractIdentifying the genetic basis of repeatedly evolved traits provides a way to reconstruct their evolutionary history and ultimately investigate the predictability of evolution. Here, we focus on the oldfield mouse (Peromyscus polionotus), which occurs in the southeastern United States, where it exhibits considerable coat-color variation. Dorsal coats range from dark brown in mice inhabiting mainland habitat to near white on the white-sand beaches of the southeastern US, where light pelage has evolved independently on Florida’s Gulf and Atlantic coasts as an adaptation to visually hunting predators. To facilitate genomic analyses in this species, we first generated a high-quality, chromosome-level genome assembly of P. polionotus subgriseus. Next, in a uniquely variable mainland population that occurs near beach habitat (P. p. albifrons), we scored 23 pigment traits and performed targeted resequencing in 168 mice. We find that variation in pigmentation is strongly associated with a ~2 kb region approximately 5 kb upstream of the Agouti-signaling protein (ASIP) coding region. Using a reporter-gene assay, we demonstrate that this regulatory region contains an enhancer that drives expression in the dermis of mouse embryos during the establishment of pigment prepatterns. Moreover, extended tracts of homozygosity in this region of Agouti indicate that the light allele has experienced recent and strong positive selection. Notably, this same light allele appears fixed in both Gulf and Atlantic coast beach mice, despite these populations being separated by >1,000km. Given the evolutionary history of this species, our results suggest that this newly identified Agouti enhancer allele has been maintained in mainland populations as standing genetic variation and from there has spread to, and been selected in, two independent beach mouse lineages, thereby facilitating their rapid and parallel evolution.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3