Marker-free characterization of single live circulating tumor cell full-length transcriptomes

Author:

Poonia Sarita,Goel Anurag,Chawla Smriti,Bhattacharya Namrata,Rai Priyadarshini,Lee Yi Fang,Yap Yoon Sim,West Jay,Bhagat Ali Asgar,Tayal Juhi,Mehta Anurag,Ahuja GauravORCID,Majumdar Angshul,Ramalingam Naveen,Sengupta Debarka

Abstract

AbstractThe identification and characterization of circulating tumor cells (CTCs) are important for gaining insights into the biology of metastatic cancers, monitoring disease progression, and medical management of the disease. The limiting factor that hinders enrichment of purified CTC populations is their sparse availability, heterogeneity, and altered phenotypic traits relative to the tumor of origin. Intensive research both at the technical and molecular fronts led to the development of assays that ease CTC detection and identification from the peripheral blood. Most CTC detection methods use a mix of size selection, immune marker based white blood cells (WBC) depletion, and positive enrichment antibodies targeting tumor-associated antigens. However, the majority of these methods either miss out on atypical CTCs or suffer from WBC contamination. Single-cell RNA sequencing (scRNA-Seq) of CTCs provides a wealth of information about their tumors of origin as well as their fate and is a potent method of enabling unbiased identification of CTCs. We present unCTC, an R package for unbiased identification and characterization of CTCs from single-cell transcriptomic data. unCTC features many standard and novel computational and statistical modules for various analysis tasks. These include a novel method of scRNA-Seq clustering, named Deep Dictionary Learning using K-means clustering cost (DDLK), expression based copy number variation (CNV) inference, and combinatorial, marker-based verification of the malignant phenotypes. DDLK enables robust segregation of CTCs and WBCs in the pathway space, as opposed to the gene expression space. We validated the utility of unCTC on scRNA-Seq profiles of breast CTCs from six patients, captured and profiled using an integrated ClearCell® FX and PolarisTM workflow that works by the principles of size-based separation of CTCs and marker based WBC depletion.

Publisher

Cold Spring Harbor Laboratory

Reference135 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3