corral: Single-cell RNA-seq dimension reduction, batch integration, and visualization with correspondence analysis

Author:

Hsu Lauren L.ORCID,Culhane Aedín C.ORCID

Abstract

AbstractEffective dimension reduction is an essential step in analysis of single cell RNA-seq (scRNAseq) count data, which are high-dimensional, sparse, and noisy. Principal component analysis (PCA) is widely used in analytical pipelines, and since PCA requires continuous data, it is often coupled with log-transformation in scRNAseq applications. However, log-transformation of scRNAseq counts distorts the data, and can obscure meaningful variation. We describe correspondence analysis (CA) for dimension reduction of scRNAseq data, which is a performant alternative to PCA. Designed for use with counts, CA is based on decomposition of a chi-squared residual matrix and does not require log-transformation of scRNAseq counts. We extend beyond standard CA (decomposition of Pearson residuals computed on the contingency table) and propose variations of CA, including an alternative chi-squared statistic, that address overdispersion and high sparsity in scRNAseq data. The performance of five variations of CA and standard CA are benchmarked on 10 datasets and compared to glmPCA. CA variations are fast, scalable, and outperform standard CA and glmPCA, to compute embeddings with more performant or comparable clustering accuracy in 8 out of 9 datasets. Of the variations we considered, we found that CA using the Freeman-Tukey chi-squared residual was most performant overall in scRNAseq data. Our analyses also showed that variance stabilizing transformations applied in conjunction with standard CA (using Pearson residuals) and the use of “power deflation” smoothing both improve performance in downstream clustering tasks, as compared to standard CA alone. CA has advantages including visual illustration of associations between genes and cell populations in a “CA biplot,” and easy extension to multi-table analysis enabling integrative dimension reduction. We introduce corralm, a CA-based method for multi-table batch integration of scRNAseq data in shared latent space, and we propose a new approach for assessing batch integration. We implement CA for scRNAseq in the corral R/Bioconductor package (https://www.bioconductor.org/packages/corral) interfaces directly with widely used single cell classes in Bioconductor, allowing for easy integration into scRNAseq pipelines.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3