Abstract
AbstractGeroscience aims to target the aging process to extend healthspan. However, even isogenic individuals show heterogeneity in natural aging rate and responsiveness to pro-longevity interventions, limiting translational potential. Using in vivo mini gene reporters in isogenic C. elegans, we show that alternative splicing of mRNAs related to lipid metabolism in young animals is coupled to subsequent life expectancy. Further, activity of RNA splicing factors REPO-1 and SFA-1 early in life modulates effectiveness of specific longevity interventions via POD-2/ACC1 and regulation of lipid utilization. In addition, early inhibition of REPO-1 renders animals refractory to late onset suppression of the TORC1 pathway. Together these data suggest that activity of RNA splicing factors and the metabolic landscape early in life can modulate responsiveness to longevity interventions and may explain variance in efficacy between individuals.One Sentence SummaryEfficacy of pro-longevity interventions in C. elegans is determined by the activity of splicing factors and the lipid metabolic landscape early in the life of the individual.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献