Pathway specific polygenic risk scores identify pathways and patient clusters associated with inflammatory bowel disease risk, severity and treatment response

Author:

Bodea Corneliu A.,Macoritto Michael,Liu Yingchun,Zhang Wenliang,Karman Jozsef,King Emily A.,Degner Jacob F.,Levesque Marc C.,Davis J. Wade,Cao Sherry

Abstract

AbstractCrohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) with a strong genetic component [1,2]. Genome-wide association studies (GWAS) have successfully identified over 240 genetic loci that are statistically associated with risk of developing IBD, and these associations provide valuable insights into disease pathobiology. Building on GWAS findings, conventional polygenic risk scores (cPRS) aim to quantify the aggregated disease risk based on DNA variation, and these scores can identify individuals at high risk. While stratifying individuals based on cPRS has the potential to inform clinical care, the development of novel therapeutics requires deep insight into how aggregated genetic risk leads to disruption of specific biological pathways. Here, we developed a pathway-specific PRS (pPRS) methodology to assess IBD common variant genetic risk burden across 31 manually curated pathways. We first prioritized 206 genes based on comprehensive fine-mapping and eQTL colocalization analyses of genome-wide significant IBD GWAS loci and 58 highly penetrant genes based on their involvement in early onset IBD or autoimmunity-related colitis. These 264 genes were assigned to at least one of the 31 pathways based on Gene Ontology annotations and manual curation. Finally, we integrated these inputs into a novel pPRS model and performed an extensive investigation of IBD disease risk, severity, complications, and anti-TNF treatment response by applying our pPRS approach to three complementary datasets encompassing IBD cases and controls. Our analysis identified multiple promising pathways that can inform drug target discovery and provides a patient stratification method that offers insights into the biology of treatment response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3