Abstract
ABSTRACTNeurons live for the lifespan of the individual and underlie our ability for lifelong learning and memory. However, aging alters neuron morphology and function resulting in age-related cognitive decline. It is well established that epigenetic alterations are essential for learning and memory, yet few neuron-specific genome-wide epigenetic maps exist into old age. Comprehensive mapping of H3K4me3 and H3K27ac in mouse neurons across lifespan revealed plastic H3K4me3 marking that differentiates neuronal age linked to known characteristics of cellular and neuronal aging. We determined that neurons in old age recapitulate the H3K27ac enrichment at promoters, enhancers and super enhancers from young adult neurons, likely representing a re-activation of pathways to maintain neuronal output. Finally, this study identified new characteristics of neuronal aging, including altered rDNA regulation and epigenetic regulatory mechanisms. Collectively, these findings indicate a key role for epigenetic regulation in neurons, that is inextricably linked with aging.
Publisher
Cold Spring Harbor Laboratory