DeepSNEM: Deep Signaling Network Embeddings for compound mechanism of action identification

Author:

Fotis C.ORCID,Alevizos G.,Meimetis N.ORCID,Koleri C.,Gkekas T.,Alexopoulos LG.ORCID

Abstract

AbstractMotivationThe analysis and comparison of compounds’ transcriptomic signatures can help elucidate a compound’s Mechanism of Action (MoA) in a biological system. In order to take into account the complexity of the biological system, several computational methods have been developed that utilize prior knowledge of molecular interactions to create a signaling network representation that best explains the compound’s effect. However, due to their complex structure, large scale datasets of compound-induced signaling networks and methods specifically tailored to their analysis and comparison are very limited. Our goal is to develop graph deep learning models that are optimized to transform compound-induced signaling networks into high-dimensional representations and investigate their relationship with their respective MoAs.ResultsWe created a new dataset of compound-induced signaling networks by applying the CARNIVAL network creation pipeline on the gene expression profiles of the CMap dataset. Furthermore, we developed a novel unsupervised graph deep learning pipeline, called deepSNEM, to encode the information in the compound-induced signaling networks in fixed-length high-dimensional representations. The core of deepSNEM is a graph transformer network, trained to maximize the mutual information between whole-graph and sub-graph representations that belong to similar perturbations. By clustering the deepSNEM embeddings, using the k-means algorithm, we were able to identify distinct clusters that are significantly enriched for mTOR, topoisomerase, HDAC and protein synthesis inhibitors respectively. Additionally, we developed a subgraph importance pipeline and identified important nodes and subgraphs that were found to be directly related to the most prevalent MoA of the assigned cluster. As a use case, deepSNEM was applied on compounds’ gene expression profiles from various experimental platforms (MicroArrays and RNA sequencing) and the results indicate that correct hypotheses can be generated regarding their MoA.Availability and ImplementationThe source code and pre-trained deepSNEM models are available at https://github.com/BioSysLab/deepSNEM.ContactEmail for correspondence: leo@mail.ntua.gr.Supplementary informationAccompanying supplementary material are available online.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3