Regulation of invasion-associated actin dynamics by the Chlamydia trachomatis effectors TarP and TmeA

Author:

Romero Matthew D.,Carabeo Rey A.ORCID

Abstract

AbstractThe obligate intracellular pathogen Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. This actin remodeling event exhibits relatively rapid dynamics that, through quantitative live-cell imaging, was revealed to consist of three phases – a fast recruitment phase which abruptly transitions to a fast turnover phase before resolving into a slow turnover of actin, indicating the end of actin remodeling. Here, we investigate Chlamydia invasion in the context of actin dynamics. Efficient invasion was associated with robust actin remodeling kinetics, which was linked to signaling from the type-III secreted effectors TarP and TmeA, and the actin nucleating activities of formin 1 (Fmn1) and Arp2/3. Stable recruitment of Fmn1 and Arp2/3 was dependent upon TarP and/or TmeA, although TarP signaling was responsible for the majority of Fmn1 and Arp2/3 recruitment. Rapid actin kinetics were due in part to a collaborative functional interaction between two different classes of actin nucleators – formins, including formin 1 and the diaphanous-related formins mDia1 and mDia2, and the Arp2/3 complex. Inhibition of either formin or Arp2/3, or deletion of TarP and TmeA, prevented this collaboration and resulted in attenuated actin kinetics and invasion efficiency. Collectively, these data support a model wherein TarP and TmeA signaling are core components of actin remodeling that operate via stable recruitment of formin and Arp2/3. At the population level, the kinetics of recruitment and turnover of actin and its nucleators were linked. However, reanalysis of the data at the level of individual elementary bodies showed significant variation and a lack of correlation between the kinetics of recruitment and turnover, suggesting that accessory factors variably modify actin kinetics at individual entry sites. In summary, efficient chlamydial invasion is an effector-driven process that requires a specific profile of actin recruitment which arises following collaboration between formin and Arp2/3.Author SummaryThe obligate intracellular pathogen Chlamydia trachomatis relies upon manipulation of the host actin cytoskeleton to drive its entry into host cells, such that impairment of actin dynamics attenuates Chlamydia invasion. Collaboration between two classes of actin nucleators, formin and Arp2/3, are known to enhance actin recruitment and turnover; we found that stable recruitment of both proteins to the signaling complex established by the type III secreted effectors, TarP and TmeA, were important for pathogen internalization. Furthermore, Formin 1 and Arp2/3 are co-recruited to sites of entry, and pharmacological inhibition of either actin nucleator impaired recruitment of the other, indicating a functional cooperation between branched and filamentous actin nucleation within pathogen entry sites. Disruption of this cooperation negatively impacted both actin dynamics and Chlamydia internalization, indicating that TarP- and TmeA-dependent entry of Chlamydia into non-phagocytic cells operates through the recruitment and activation of Arp2/3 and Formin 1. Finally, kinetic analysis of actin recruitment and turnover revealed that these processes were independently regulated, in addition to implicating the presence of local factors that fine-tune actin dynamics and subsequent invasion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3