Microglial phagocytosis dysfunction during stroke is prevented by rapamycin

Author:

Beccari SORCID,Sierra-Torre VORCID,Valero JORCID,García-Zaballa M,Carretero-Guillen AORCID,Capetillo-Zarate EORCID,Domercq MORCID,Huguet PRORCID,Ramonet DORCID,Osman A,Han W,Dominguez C,Faust TEORCID,Touzani OORCID,Boya PORCID,Schafer DORCID,Mariño GORCID,Canet-Soulas EORCID,Blomgren KORCID,Plaza-Zabala AORCID,Sierra AORCID

Abstract

ABSTRACTMicroglial phagocytosis is rapidly emerging as a therapeutic target in neurodegenerative and neurological disorders. An efficient removal of cellular debris is necessary to prevent buildup damage of neighbor neurons and the development of an inflammatory response. As the brain professional phagocytes, microglia are equipped with an array of mechanisms that enable them to recognize and degrade several types of cargo, including neurons undergoing apoptotic cell death. While microglia are very competent phagocytes of apoptotic cells under physiological conditions, here we report their dysfunction in mouse and monkey (Macaca fascicularis and Callithrix jacchus) models of stroke by transient occlusion of the medial cerebral artery (tMCAo). The impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrients deprivation (OND), which led to reduced process motility, lysosomal depletion, and the induction of a protective autophagy response in microglia. Basal autophagy, which is in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using knock-out models of autophagy genes and the autophagy inhibitor MRT68921. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro. These results suggest a more complex role of microglia in stroke than previously acknowledged, classically related to the inflammatory response. In contrast, here we demonstrate the impairment of apoptotic cell phagocytosis, a microglial function critical for brain recovery. We propose that phagocytosis is a therapeutic target yet to be explored and provide evidence that it can be modulated in vivo using rapamycin, setting the stage for future therapies for stroke patients.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3