Abstract
AbstractThe moss Physcomitrium patens diverged from green algae shortly after the colonization of land by ancient plants. This colonization posed new environmental challenges which drove evolutionary processes. The photosynthetic machinery of modern flowering plants is adapted to the high light conditions on land. Red shifted Lhca4 antennae are present in the photosystem I light harvesting complex of many green lineage plants but absent from P. patens. The Cryo-EM structure of the P. patens photosystem I light harvesting complex I supercomplex (PSI-LHCI) at 2.8 Å reveals that Lhca4 is replaced by a unique Lhca2 paralogue in moss. This PSI-LHCI supercomplex also retains the PsaM subunit, present in cyanobacteria and several algal species but lost in higher plants, and the PsaO subunit responsible for binding light harvesting complex II. The blue shifted Lhca2 paralogue and chlorophyll b enrichment relative to higher plants make the P. patens PSI-LHCI spectroscopically unique among other green lineage supercomplexes. Overall, the structure represents an evolutionary intermediate PSI with the crescent shaped LHCI common in higher plants and contains a unique Lhca2 paralogue which facilitates the mosses adaptation to low light niches.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The revolution evolution;Nature Plants;2021-12-16