Reproductive isolation via polygenic local adaptation in sub-divided populations: effect of linkage disequilibria and drift

Author:

Sachdeva HimaniORCID

Abstract

AbstractThis paper considers how local adaptation and reproductive isolation between hybridizing populations is influenced by linkage disequilibria (LD) between multiple divergently selected loci, in scenarios where both gene flow and genetic drift degrade local adaptation. It shows that the combined effects of multi-locus LD and genetic drift on allele frequencies at selected loci and on heterozygosity at neutral loci are predicted accurately by incorporating (deterministic) effective migration rates into the diffusion approximation (for selected loci) and into the structured coalescent (for neutral loci). Theoretical approximations are tested against individual-based simulations and used to investigate conditions for the maintenance of local adaptation on an island subject to one-way migration from a differently adapted mainland, and in an infinite-island population with two habitats under divergent selection. The analysis clarifies the conditions under which LD between sets of locally deleterious alleles allows these to be collectively eliminated despite drift, causing sharper and (under certain conditions) shifted migration thresholds for loss of adaptation. Local adaptation also has counter-intuitive effects on neutral (relative) divergence: FST is highest for a pair of subpopulations belonging to the same (rare) habitat, despite the lack of reproductive isolation between them.Author SummaryEnvironmental adaptation often involves spatially heterogeneous selection at many genetic loci. Thus, the evolutionary consequences of hybridisation between populations adapted to different environments depend on the coupled dynamics of multiple loci under selection, migration and genetic drift, making them challenging to predict. Here, I introduce theoretical approximations that accurately capture the effect of such coupling on allele frequencies at individual loci, while also accounting for the stochastic effects of genetic drift. I then use these approximations to study hybridisation in a metapopulation consisting of many interconnected subpopulations, where each subpopulation belongs to one of two habitats under divergent selection. The analysis clarifies how subpopulations belonging to a rare habitat can maintain local adaptation despite high levels of migration if net selection against multi-locus genotypes is stronger than a threshold which depends on the relative abundances of the two habitats. Further, local adaptation in a metapopulation can significantly elevate FST between subpopulations belonging to the same habitat, even though these are not reproductively isolated. These findings highlight the importance of carefully considering the genetic architecture and spatial context of divergence when interpreting patterns of genomic differentiation between speciating populations.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. The barrier to genetic exchange between hybridising populations

2. Multilocus Clines

3. THE EVOLUTION OF STRONG REPRODUCTIVE ISOLATION

4. The Relation Between Reproductive Value and Genetic Contribution

5. Bengtsson, B. O. 1985. The flow of genes through a genetic barrier. Pages 31–42 Cambridge University Press Cambridge; New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3