Is it time to use machine learning survival algorithms for survival and risk factors prediction instead of Cox proportional hazard regression? A comparative population-based study

Author:

Morsy SaraORCID,Hieu Truong HongORCID,Makram Abdelrahman MORCID,Hassan Osama GamalORCID,Minh Duc Nguyen TranORCID,Zayan Ahmad HelmyORCID,Nhat-Nam Le-Dong,Huy Nguyen TienORCID

Abstract

AbstractPurposeApplying machine learning in medical statistics offers more accurate prediction models. In this paper, we aimed to compare the performance of the Cox Proportional Hazard model (CPH), Classification and Regression Trees (CART), and Random Survival Forest (RSF) in short-, and long-term prediction in glioblastoma patients.MethodsWe extracted glioblastoma cancer data from the Surveillance, Epidemiology, and End Results database (SEER). We used the CPH, CART, and RSF for the prediction of 1- to 10-year survival probabilities. The Brier Score for each duration was calculated, and the model with the least score was considered the most accurate.ResultsThe cohort included 26473 glioblastoma patients divided into two groups: training (n = 18538) and validation set (n = 7935). The average survival duration was seven months. For the short- and long-term predictions, RSF was the best algorithm followed by CPH and CART.ConclusionFor big data, RSF was found to have the highest accuracy and best performance. Using the accurate statistical model for survival prediction and prognostic factors determination will help the care of cancer patients. However, more developments of the R packages are needed to allow more illustrations of the effect of each covariate on the survival probability.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3