Heat stress prevented the biomass and yield stimulation caused by elevated CO2 in two well-watered wheat cultivars

Author:

Chavan Sachin G.ORCID,Duursma Remko A.,Tausz Michael,Ghannoum Oula

Abstract

AbstractTo investigate the interactive effects of elevated CO2 and heat stress (HS), we grew two contrasting wheat cultivars, early-maturing Scout and high-tillering Yitpi, under non-limiting water and nutrients at ambient (aCO2, 450 ppm) or elevated (eCO2, 650 ppm) CO2 and 22°C in the glasshouse. Plants were exposed to two 3-day HS cycles at the vegetative (38.1°C) and/or flowering (33.5°C) stage.At aCO2, both wheat cultivars showed similar responses of photosynthesis and mesophyll conductance to temperature and produced similar grain yield. Relative to aCO2, eCO2 enhanced photosynthesis rate and reduced stomatal conductance and maximal carboxylation rate (Vcmax). During HS, high temperature stimulated photosynthesis at eCO2 in both cultivars, while eCO2 stimulated photosynthesis in Scout. Electron transport rate (Jmax) was unaffected by any treatment. eCO2 equally enhanced biomass and grain yield of both cultivars in control, but not HS, plants. HS reduced biomass and yield of Scout at eCO2. Yitpi, the cultivar with higher grain nitrogen, underwent a trade-off between grain yield and nitrogen. In conclusion, eCO2 improved photosynthesis of control and HS wheat, and improved biomass and grain yield of control plants only. Under well-watered conditions, HS was not detrimental to photosynthesis or growth but precluded a yield response to eCO2.Key messageHigh temperatures increased photosynthetic rates only at eCO2 and photosynthesis was upregulated after recovery from heat stress at eCO2 in Scout suggesting that eCO2 increased optimum temperature of photosynthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3