Reduction in population size and not a shift in parasite community affect evolution of immune genes in island birds

Author:

Barthe MathildeORCID,Doutrelant ClaireORCID,Covas RitaORCID,Melo MartimORCID,Illera Juan CarlosORCID,Tilak Marie-KaORCID,Colombier Constance,Leroy ThibaultORCID,Loiseau ClaireORCID,Nabholz BenoitORCID

Abstract

AbstractShared ecological conditions encountered by species that colonize islands often lead to the evolution of convergent phenotypes, commonly referred to as “island syndrome”. Reduced immune functions have been previously proposed to be part of the island syndrome, as a consequence of the reduced diversity of pathogens on island ecosystems. According to this hypothesis, immune genes are expected to exhibit genomic signatures of relaxed selection pressure in island species. In this study, we used comparative genomic methods to study immune genes in island species (N = 20) and their mainland relatives (N = 14). We gathered public data as well as generated new data on innate (Toll-Like Receptors, Beta Defensins) and acquired immune genes (Major Histocompatibility Complex classes I and II), but also on hundreds of genes annotated as involved in various immune functions. As a control, we used a set of 97 genes not involved in immune functions, to account for the lower effective population sizes in island species. We used synonymous and non-synonymous variations to estimate the selection pressure acting on immune genes. For the genes evolving under balancing selection, we used simulation to estimate the impact of population size variation. We found a significant effect of drift on immune genes of island species leading to a reduction in genetic diversity and efficacy of selection. However, the intensity of relaxed selection was not significantly different from control genes, except for MHC class II genes. These genes exhibit a significantly higher level of non-synonymous loss of polymorphism than expected assuming only drift and an evolution under frequency dependent selection, possibly due to a reduction of extracellular parasite communities on islands. Overall, our results showed that demographic effects lead to a decrease in the immune functions of island species, but the relaxed selection caused by a reduced parasite pressure may only occur in some immune genes categories.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demographic effects may affect adaptation to islands;Peer Community In Evolutionary Biology;2022-11-02

2. Biogeography and Evolution in the Oceanic Islands of the Gulf of Guinea;Biodiversity of the Gulf of Guinea Oceanic Islands;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3