The Atypical Antipsychotic Quetiapine Induces Multiple Antibiotic Resistance in Escherichia coli

Author:

Kyono Yasuhiro,Ellezian Lori,Hu YueYue,Eliadis Kanella,Moy Junlone,Hirsch Elizabeth B.ORCID,Federle Michael J.ORCID,Flowers Stephanie A.ORCID

Abstract

ABSTRACTAtypical antipsychotic (AAP) medication is a critical tool for treating symptoms of psychiatric disorders. While AAPs primarily target dopamine (D2) and serotonin (5HT2A and 5HT1A) receptors, they also exhibit intrinsic antimicrobial activity as an off-target effect. Because AAPs are often prescribed to patients for many years, a potential risk associated with long-term AAP use is the unintended emergence of bacteria with antimicrobial resistance (AMR). Here, we show that exposure to the AAP quetiapine at estimated gut concentrations promotes AMR in Escherichia coli after six weeks. Quetiapine-exposed isolates exhibited an increase in minimal inhibitory concentrations (MICs) for ampicillin, tetracycline, ceftriaxone, and levofloxacin. By whole genome sequencing analysis, we identified mutations in genes that confer AMR, including the repressor for the multiple antibiotic resistance mar operon (marR), and real-time RT-qPCR analysis showed increased levels of marA, acrA, and tolC mRNAs and a reduced level of ompF mRNA in the isolates carrying marR mutations. To determine the contribution of each marR mutation to AMR, we constructed isogenic strains carrying individual mutant marR alleles in the parent background and re-evaluated their resistant phenotypes using MIC and RT-qPCR assays. While marR mutations induced a robust activity of the mar operon, they resulted in only a modest increase in MICs. Interestingly, although these marR mutations did not fully recapitulate the AMR phenotype of the quetiapine-exposed isolates, we show that marR mutations promote growth fitness in the presence of quetiapine. Our findings revealed an important link between the use of AAPs and AMR development in E. coli.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3