Structure and conservation of amyloid spines from the Candida albicans Als5 adhesin including similarity to human LARKS

Author:

Golan Nimrod,Perov Sergei Schwartz,Landau Meytal,Lipke Peter N.ORCID

Abstract

ABSTRACTCandida Als family adhesins mediate adhesion to biological and abiotic substrates, as well as fungal cell aggregation and fungal-bacterial co-aggregation. The activity of at least two family members, Als5 and Als1, is dependent on amyloid-like protein aggregation that is initiated by shear force. Each Als adhesin has a ∼300-residue N-terminal Ig-like/invasin region. The following 108-residue, low complexity, threonine-rich (T) domain unfolds under shear to expose a critical amyloid-forming segment 322SNGIVIVATTRTV334 at the interface between the Ig-like/invasin domain 2 and the T domain of Candida albicans Als5. Amyloid prediction programs identified six potential amyloidogenic sequences in the Ig/invasin region and three others in the T domain of C. albicans Als5. Peptides derived from four of these sequences formed fibrils that bound thioflavin T, the amyloid indicator dye, and three of these revealed atomic-resolution structures of cross-β spines. These are the first atomic-level structures for fungal adhesins. One of these segments, from the T domain, revealed kinked β-sheets, similarly to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked segments) found in human functional amyloids. Based on the cross-β structures in Als proteins, we use evolutionary arguments to identify functional amyloidogenic sequences in other fungal adhesins. Thus, cross-β structures are often involved in fungal pathogenesis and potentially in antifungal therapy.ImportanceFungal adhesins form cell-to-cell bonds in biofilms. Many of the cellular interactions are dependent on formation of amyloid-like cross-β protein aggregates. Such structures are called ‘functional amyloids’ because they perform physiological activities and they are dependent on the same types of protein interactions that form the more familiar amyloid deposits in neurodegenerative diseases. We have identified sequence segments that form cross-β structures in the Als5 adhesin from the human pathogen Candida albicans. Such sequences are widespread among ALS family adhesins, including those from other human pathogens including Candida auris. Moreover, we revealed a structural similarity in a segment originating from Als5 threonine-rich low complexity region to human LARKS, pointing on a common structural motif coding for functional amyloids in different kingdoms of life.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3