Systematic Perturbation of an Artificial Neural Network: A Step Towards Quantifying Causal Contributions in The Brain

Author:

Fakhar KaysonORCID,Hilgetag Claus C.ORCID

Abstract

AbstractLesion inference analysis is a fundamental approach for characterizing the causal contributions of neural elements to brain function. Historically, it has helped to localize specialized functions in the brain after brain damage, and it has gained new prominence through the arrival of modern optogenetic perturbation techniques that allow probing the functional contributions of neural circuit elements at unprecedented levels of detail.While inferences drawn from brain lesions are conceptually powerful, they face methodological difficulties due to the brain’s complexity. Particularly, they are challenged to disentangle the functional contributions of individual neural elements because many elements may contribute to a particular function, and these elements may be interacting anatomically as well as functionally. Therefore, studies of real-world data, as in clinical lesion studies, are not suitable for establishing the reliability of lesion approaches due to an unknown, potentially complex ground truth. Instead, ground truth studies of well-characterized artificial systems are required.Here, we systematically and exhaustively lesioned a small Artificial Neural Network (ANN) playing a classic arcade game. We determined the functional contributions of all nodes and links, contrasting results from single-element perturbations and perturbing multiple elements simultaneously. Moreover, we computed pairwise causal functional interactions between the network elements, and looked deeper into the system’s inner workings, proposing a mechanistic explanation for the effects of lesions.We found that not every perturbation necessarily reveals causation, as lesioning elements, one at a time, produced biased results. By contrast, multi-site lesion analysis captured crucial details that were missed by single-site lesions. We conclude that even small and seemingly simple ANNs show surprising complexity that needs to be understood for deriving a causal picture of the system. In the context of rapidly evolving multivariate brain-mapping approaches and inference methods, we advocate using in-silico experiments and ground-truth models to verify fundamental assumptions, technical limitations, and the scope of possible interpretations of these methods.Author summaryThe motto “No causation without manipulation” is canonical to scientific endeavors. In particular, neuroscience seeks to find which brain elements are causally involved in cognition and behavior of interest by perturbing them. However, due to complex interactions among those elements, this goal has remained challenging.In this paper, we used an Artificial Neural Network as a ground-truth model to compare the inferential capacities of lesioning the system one element at a time against sampling from the set of all possible combinations of lesions.We argue for employing more exhaustive perturbation regimes since, as we show, lesioning one element at a time provides misleading results. We further advocate using simulated experiments and ground-truth models to verify the assumptions and limitations of brain-mapping methods.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Entangled Brain;Journal of Cognitive Neuroscience;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3