Sequence conservation, domain architectures, and phylogenetic distribution of the HD-GYP type c-di-GMP phosphodiesterases

Author:

Galperin Michael Y.ORCID,Chou Shan-HoORCID

Abstract

ABSTRACTThe HD-GYP domain, named after two of its conserved sequence motifs, was first described in 1999 as a specialized version of the widespread HD phosphohydrolase domain that had additional highly conserved amino acid residues. Domain associations of HD-GYP indicated its involvement in bacterial signal transduction and distribution patterns of this domain suggested that it could serve as a hydrolase of the bacterial second messenger c-di-GMP, in addition to or instead of the EAL domain. Subsequent studies confirmed the ability of various HD-GYP domains to hydrolyze c-di-GMP to linear pGpG and/or GMP. Certain HD-GYP-containing proteins hydrolyze another second messenger, cGAMP, and some HD-GYP domains participate in regulatory protein-protein interactions. The recently solved structures of HD-GYP domains from four distinct organisms clarified the mechanisms of c-di-GMP binding and metal-assisted hydrolysis. However, the HD-GYP domain is poorly represented in public domain databases, which causes certain confusion about its phylogenic distribution, functions, and domain architectures. Here, we present a refined sequence model for the HD-GYP domain and describe the roles of its most conserved residues in metal and/or substrate binding. We also calculate the numbers of HD-GYPs encoded in various genomes and list the most common domain combinations involving HD-GYP, such as the RpfG (REC–HD-GYP), Bd1817 (DUF3391– HD-GYP), and PmGH (GAF–HD-GYP) protein families. We also provide the descriptions of six HD-GYP–associated domains, including four novel integral membrane sensor domains. This work is expected to stimulate studies of diverse HD-GYP-containing proteins, their N-terminal sensor domains and the signals to which they respond.IMPORTANCEThe HD-GYP domain forms class II of c-di-GMP phosphodiesterases that control the cellular levels of the universal bacterial second messenger c-di-GMP and therefore affect flagellar and/or twitching motility, cell development, biofilm formation, and, often, virulence. Despite more than 20 years of research, HD-GYP domains are insufficiently characterized; they are often confused with ‘classical’ HD domains that are involved in various housekeeping activities and may participate in signaling, hydrolyzing (p)ppGpp and c-di-AMP. This work provides an updated description of the HD-GYP domain, including its sequence conservation, phylogenetic distribution, domain architectures, and the most widespread HD-GYP-containing protein families. This work shows that HD-GYP domains are widespread in many environmental bacteria and are predominant c-di-GMP hydrolases in many lineages, including clostridia and deltaproteobacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3