Towards a general framework for modeling large-scale biophysical neuronal networks: a full-scale computational model of the rat dentate gyrus

Author:

Raikov Ivan GeorgievORCID,Milstein AaronORCID,Moolchand Prannath,Szabo Gergely G,Schneider Calvin,Hadjiabadi Darian,Chatzikalymniou Alexandra,Soltesz Ivan

Abstract

AbstractLarge-scale computational models of the brain are necessary to accurately represent anatomical and functional variability in neuronal biophysics across brain regions and also to capture and study local and global interactions between neuronal populations on a behaviorally-relevant temporal scale. We present the methodology behind and an initial implementation of a novel open-source computational framework for construction, simulation, and analysis of models consisting of millions of neurons on high-performance computing systems, based on the NEURON and CoreNEURON simulators (Carnevale and Hines, 2006, Kumbhar et al., 2019). This framework uses the HDF5 data format and software library (HDF Group, 2021) and includes a data format for storing morphological, synaptic, and connectivity information of large neuronal network models, and an accompanying open-source software library that provides efficient, scalable parallel storage and MPI-based data movement capabilities. We outline our approaches for constructing detailed large-scale biophysical models with topographical connectivity and input stimuli, and present simulation results obtained with a full-scale model of the dentate gyrus constructed with our framework. The model generates sparse and spatially selective population activity that fits well with in-vivo experimental data. Moreover, our approach is fully general and can be applied to modeling other regions of the hippocampal formation in order to rapidly evaluate specific hypotheses about large-scale neural architectural features.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3