Abstract
AbstractFundamental processes of obligate intracellular parasites, such as Toxoplasma gondii and Plasmodium falciparum, are controlled by a set of plant-like calcium dependent kinases (CDPKs), the conserved cAMP- and cGMP-dependent protein kinases (PKA and PKG), secondary messengers and lipid signalling. While some major components of the signalling networks have been identified, how these are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels to activate PKG or CDPKs, respectively. We show that both these inducers trigger near identical signalling pathways and provide evidence for a positive feedback loop involving CDPK3. We measure phospho- and lipid signalling in parasites treated with the Ca2+ ionophore A23187 in a sub-minute timecourse and show CDPK3-dependent regulation of diacylglycerol levels and increased phosphorylation of four phosphodiesterases (PDEs), suggesting their function in the feedback loop. Disruption of CDPK3 leads to elevated cAMP levels and inhibition of PKA signalling rescues the egress defect of ΔCDPK3 parasites treated with A23187. Biochemical analysis of the four PDEs identifies PDE2 as the only cAMP-specific PDE among these candidates, while the other PDEs are cGMP specific, two of which are inhibited by the predicted PDE inhibitor BIPPO. Conditional deletion of the four PDEs supports an important, but non-essential role for PDE1 and PDE2 in growth, with PDE2 controlling A23187-mediated egress. In summary we uncover a positive feedback loop that enhances signalling during egress and links several signalling pathways together.
Publisher
Cold Spring Harbor Laboratory