Regulation and mechanistic basis of macrolide resistance by the ABC-F ATPase MsrD

Author:

Fostier Corentin R.ORCID,Ousalem FarèsORCID,Leroy Elodie C.ORCID,Ngo Saravuth,Soufari HeddyORCID,Innis C. AxelORCID,Hashem YaserORCID,Boël GrégoryORCID

Abstract

SUMMARYAntibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors currently proliferating among human pathogens that provide resistance against clinically important ribosome-targeting antibiotics. Here, we combine genetic and structural approaches to determine the activity of the streptococcal ARE ABC-F protein MsrD on the ribosome and its regulation in response to macrolide exposure. We show that cladinose-containing macrolides lead to insertion of MsrDL leader peptide into a conserved crevice of the ribosomal exit tunnel, which remained thus far undocumented, concomitantly with 23S rRNA rearrangements that preclude proper accommodation of release factors and inhibits termination. The stalled ribosome obstructs formation of a Rho-independent terminator which prevents msrD transcriptional attenuation. This stalled ribosome is rescued by MsrD powered by its two functionally asymmetric ATPase sites, but not by MsrD mutants which do not provide antibiotic resistance, showing evidence of equivalence between MsrD function in antibiotic resistance and its action on this complex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3