Abstract
AbstractVon Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the (trans-)Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D’D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose two previously buried cysteines that are known to be vital for multimerization. By characterizing the conformational change at varying levels of force, we are able to quantify the kinetics of the transition and the stability of the interface. We find a pronounced destabilization of the interface upon lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D’D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII (FVIII), providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D’D3 domain in VWF biosynthesis and function and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.
Publisher
Cold Spring Harbor Laboratory