Imaging microvasculature network evolution and neurodegeneration with precise photothrombosis approach

Author:

Zhu Liang,Wang Mengqi,Liu Yin,Zhang Weijie,Zhang Hequn,Roe Anna Wang,Xi Wang

Abstract

AbstractIn the cerebral cortex, the vasculature plays important homeostatic functions, especially at the highly connected complex capillary networks. The association of focal capillary ischemia with the neurodegenerative disease as well as the laminar vascular dynamics have prompted studies of vascular micro-occlusion via photothrombosis. However, technical challenges of this approach remain, including increased temporal precision of occlusion, increasing the depth of vascular occlusion, understanding how such micro-occlusion impacts local blood flow, and ultimately the neuronal effects of such changes. Here, we have developed a novel approach that employs ultra-fast multiphoton light to induce focal Rose Bengal-induced photothrombosis. We demonstrated induction of highly precise and fast occlusion of microvessels at various types and depths. The change of the microvascular architecture and hemodynamics after occlusion revealed the autoregulation and significant difference between upstream vs downstream in layer 2/3. Further, we found that micro-occlusion at two different layers within the same vascular arbor results in distinct effects on the acute flow redistribution mechanism. To examine neuronal effects of such micro-occlusion, we produced infarct of capillaries surrounding a labeled target neuron and found this induces dramatic and rapid lamina-specific degeneration in neuronal dendritic architecture. In sum, our technique enhanced the precision and power of the photothrombotic study of microvascular function. The current results pointed to the importance of laminar scale regulation within the microvascular network, a finding which may be relevant for models of neurovascular disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3