Frizzled-4 regulates β-catenin in endothelial cells exposed to disturbed flow via an atypical Wnt pathway leading to proinflammatory activation and increased permeability

Author:

Rickman Matthew,Ghim Mean,Pang Kuin Tian,von Huelsen Rocha Ana Cristina,Drudi Elena M.,Sureda-Vives ,Ayoub Nicolas,Tajadura-Ortega Virginia,George Sarah J.,Weinberg Peter D.,Warboys Christina M.ORCID

Abstract

AbstractObjectiveEndothelial cells are regulated by hemodynamic wall shear stress and multidirectional shear stress is known to promote endothelial dysfunction, although the molecular mechanisms are poorly defined. Wnt pathways play an important role in non-vascular mechanoresponsive cells. Here we investigated their role in endothelial mechanosignalling and endothelial dysfunction.Approach & ResultsHuman aortic endothelial cells were exposed to shear stress using an orbital shaker. The expression of Frizzled-4 receptors was significantly increased in endothelial cells exposed to low magnitude multidirectional flow (LMMF) relative to high magnitude uniaxial flow (HMUF). Increased expression was also detected in regions of the murine aortic arch exposed to LMMF. The increased Frizzled-4 expression in cultured cells was abrogated following knockdown of R-spondin-3 (RSPO-3) using RNA interference. LMMF also increased the stabilisation and nuclear localisation of β-catenin, an effect that was dependent on Frizzled-4 and RSPO-3. Inhibition of β-catenin using a small molecule inhibitor (iCRT5), or knockdown of Frizzled-4 or R-spondin-3 resulted in a significant reduction of pro-inflammatory gene expression in endothelial cells exposed to LMMF. Stabilisation of the β-catenin destruction complex using IWR-1 under LMMF also reduced pro-inflammatory gene expression, as did inhibition of Wnt5a signalling. Interestingly, inhibition of the canonical Wnt pathway had no effect. Inhibition of β-catenin signalling also reduced endothelial permeability; this was associated with altered junctional and focal adhesion organisation and cytoskeletal remodelling.ConclusionsThese data suggest the presence of an atypical Wnt-β-catenin pathway in endothelial cells that promotes inflammatory activation and barrier disruption in response to LMMF.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3