Effects of trust, risk perception, and health behavior on COVID-19 disease burden: Evidence from a multi-state US survey

Author:

Ridenhour Benjamin J.ORCID,Sarathchandra Dilshani,Seamon Erich,Brown Helen,Leung Fok-Yan,Johnson-Leon Maureen,Megheib Mohamed,Miller Craig R.,Johnson-Leung Jennifer

Abstract

AbstractEarly public health strategies to prevent the spread of COVID-19 in the United States relied on non-pharmaceutical interventions (NPIs) as vaccines and therapeutic treatments were not yet available. Implementation of NPIs, primarily social distancing and mask wearing, varied widely between communities within the US due to variable government mandates, as well as differences in attitudes and opinions. To understand the interplay of trust, risk perception, behavioral intention, and disease burden, we developed a survey instrument to study attitudes concerning COVID-19 and pandemic behavioral change in three states: Idaho, Texas, and Vermont. We designed our survey (n = 1034) to detect whether these relationships were significantly different in rural populations. The best fitting structural equation models show that trust indirectly affects protective pandemic behaviors via health and economic risk perception. We explore two different variations of this social cognitive model: the first assumes behavioral intention affects future disease burden while the second assumes that observed disease burden affects behavioral intention. In our models we include several exogenous variables to control for demographic and geographic effects. Notably, political ideology is the only exogenous variable which significantly affects all aspects of the social cognitive model (trust, risk perception, and behavioral intention). While there is a direct negative effect associated with rurality on disease burden, likely due to the protective effect of low population density in the early pandemic waves, we found a marginally significant, positive, indirect effect of rurality on disease burden via decreased trust (p = 0.095). This trust deficit creates additional vulnerabilities to COVID-19 in rural communities which also have reduced healthcare capacity. Increasing trust by methods such as in-group messaging could potentially remove some of the disparities inferred by our models and increase NPI effectiveness.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3