Bacterial LomR Induces the Vibriophage VP882 VqmA-Directed Quorum-Sensing Lysogeny-Lysis Transition

Author:

Sun Jennifer S.ORCID,Mashruwala Ameya A.,Fei Chenyi,Bassler Bonnie L.ORCID

Abstract

SUMMARYThe bacterial cell-cell communication process called quorum sensing enables groups of bacteria to synchronously alter behavior in response to changes in cell population density. Quorum sensing relies on the production, release, accumulation, and detection of extracellular signal molecules called autoinducers. Here, we investigate a mechanism employed by a vibriophage to surveil host quorum sensing and tune its lysogeny-lysis decision to host cell density. The phage possesses a gene called vqmAPhage encoding a quorum-sensing receptor homologous to vibrio VqmA. Both VqmA receptors can detect the host bacteria-produced autoinducer called DPO. DPO-bound VqmAPhage launches the phage lysis process. We discover that the bacterial host produces an inducer of the VqmAPhage-directed quorum-sensing lysogeny-lysis transition. Production of the inducer appears to be widespread among bacteria. A screen of the Escherichia coli Keio collection for mutants impaired for inducer production revealed lomR, located in a prophage, and encoding a poorly understood protein. In the E. coli screening strain, lomR is interrupted by DNA encoding an insertion element. The 3’ domain of this LomR protein is sufficient to induce VqmAPhage-directed lysis. Alanine-scanning mutagenesis showed that substitution at either of two key residues abrogates inducer activity. Full-length LomR is similar to the outer membrane porin OmpX in E. coli and Vibrio parahaemolyticus O3:K6, and OmpT in Vibrio cholerae C6706, and indeed, OmpX and OmpT can induce VqmAPhage-directed activity. Possibly, development of the LomR, OmpX, or OmpT proteins as tools to direct phage lysis of host cells could be used to control bacteria in medical or industrial settings.ABSTRACT IMPORTANCEBacteria communicate with chemical signal molecules using a process called quorum sensing. Quorum sensing allows bacteria to track their cell numbers and orchestrate collective behaviors. Recently, we discovered that a virus that infects and kills bacteria “eavesdrops” on its host’s quorum-sensing process. Specifically, the virus monitors host cell growth by detecting the accumulation of host quorum-sensing signal molecules. In response to the garnered quorum-sensing information, the virus kills the host bacterial cells when the bacterial population has reached a high cell density. This strategy presumably enhances transmission of viruses to new host cells. Here, we discover and characterize three closely-related bacterial host-produced proteins called LomR, OmpX, and OmpT that are capable of inducing the viral quorum-sensing-mediated killing program. Development of this class of inducer proteins as tools to drive “on demand” virus-mediated lysis of pathogenic host bacterial cells could be used to control bacteria in medical or industrial settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3